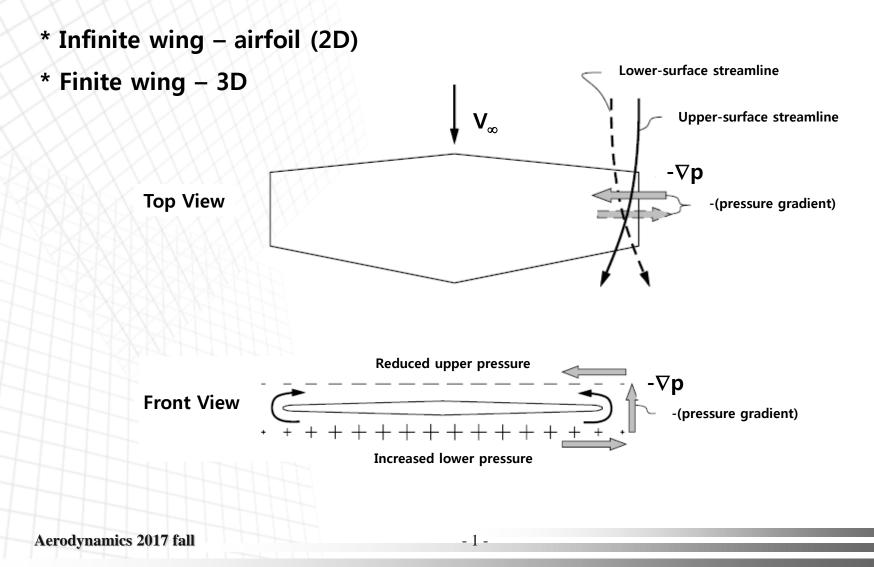
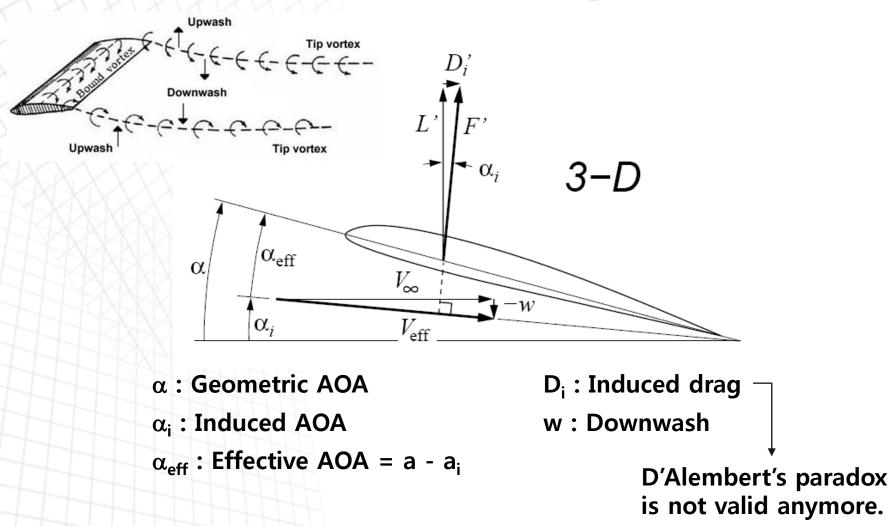
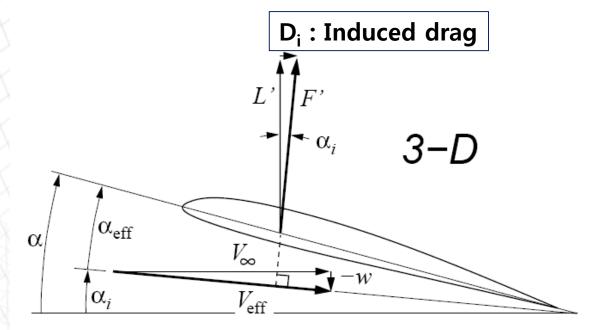
< 5.1 Downwash and Induced Drag >



< 5.1 Downwash and Induced Drag >



< 5.1 Downwash and Induced Drag >

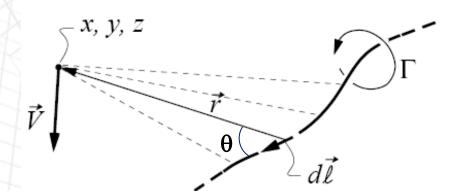


* Total drag = profile drag + induced drag = pressure drag + skin friction drag + induced drag D_{total} = D_p + D_f + D_i

< 5.2 The Biot-Savart Law and Helmholtz's Theorems>

***** The Biot-Savart Law

* vortex filament

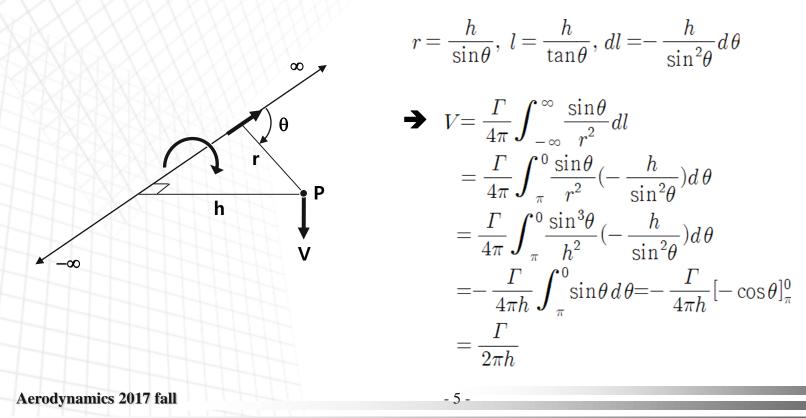


 $\vec{dV} = \frac{\Gamma}{4\pi} \frac{\vec{dl} \times \vec{r}}{|r|^3}$ $\vec{V} = \int_{-\infty}^{\infty} \frac{\Gamma}{4\pi} \frac{\vec{dl} \times \vec{r}}{|r|^3}$ $V = |\vec{V}| = \frac{\Gamma}{4\pi} \int_{-\infty}^{\infty} \frac{\sin\theta}{r^2} dl$

< 5.2 The Biot-Savart Law and Helmholtz's Theorems>

***** The Biot-Savart Law

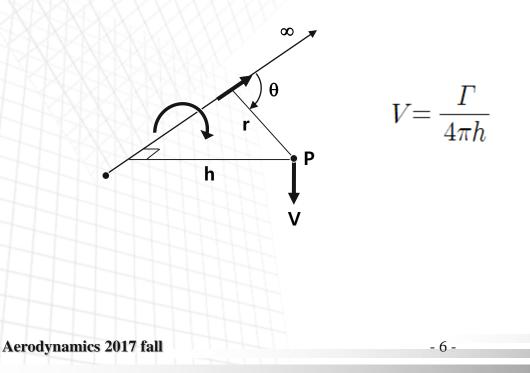
* An infinite straight vortex filament



< 5.2 The Biot-Savart Law and Helmholtz's Theorems>

***** The Biot-Savart Law

* An Semi-infinite straight vortex filament

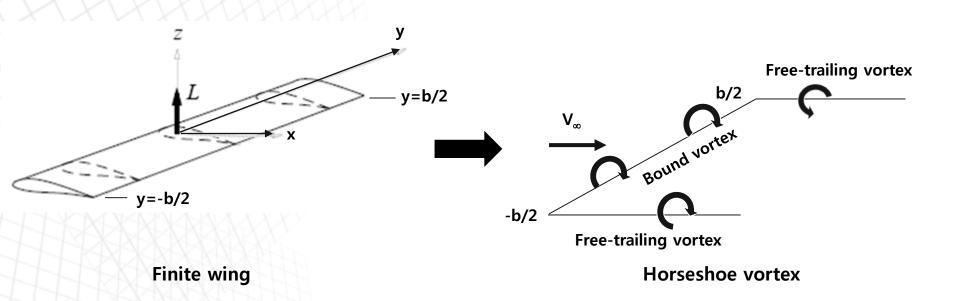


< 5.2 The Biot-Savart Law and Helmholtz's Theorems>

Helmholtz's theorems

- * Vortex strength is constant along the filament
- * Vortices are forever (never end)
- * Vortices move with the flow

< 5.3 Prandtl's Classical Lifting-Line Theory>



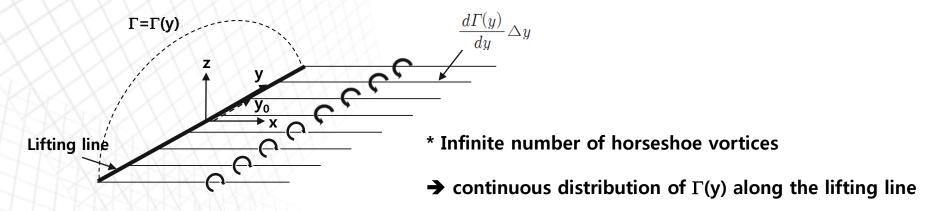
* The velocity at any point y along the bound vortex induced by the trailing semi-infinte vortices

$$\Rightarrow \ w(y) = -\frac{\Gamma}{4\pi(\frac{b}{2}+y)} - \frac{\Gamma}{4\pi(\frac{b}{2}-y)} = -\frac{\Gamma}{4\pi}\frac{b}{(\frac{b}{2})^2 - y^2}$$

Aerodynamics 2017 fall

< 5.3 Prandtl's Classical Lifting-Line Theory>

* Superimposition of a large number of horseshoe vortices



* The velocity dw at y₀ induced by the entire semi-infinite trailing vortex located at y

$$\Rightarrow \qquad dw = -\frac{(d\Gamma/dy)dy}{4\pi(y_0 - y)}$$

* Then the total velocity w induced at y_0 by the entire trailing vortex sheet

Aerodynamics 2017 fall

< 5.3 Prandtl's Classical Lifting-Line Theory>

* The induced angle of attack α_i at the local airfoil section of a finite wing of the arbitrary spanwise station y_0

* Substituting eq. (1) into eq. (2)

< 5.3 Prandtl's Classical Lifting-Line Theory>

* The lift coefficient for the airfoil section at y=y₀

$$C_l = \mathbf{a}_0 \left[\alpha_{eff}(y_0) - \alpha_{L=0} \right] = 2\pi \left[\alpha_{eff}(y_0) - \alpha_{L=0} \right] \quad (4)$$

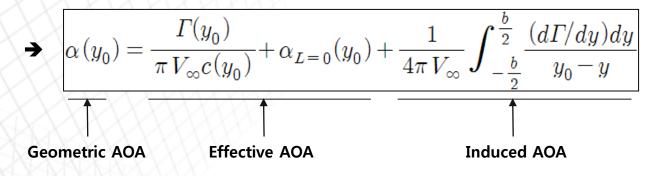
* From the definition of lift coefficient and the Kotta-Joukowski theorem

* Substituting eq. (5) into eq. (4)

Aerodynamics 2017 fall

< 5.3 Prandtl's Classical Lifting-Line Theory>

* Substitution of eq.(3) and (6) into the equation for $\alpha_{\rm eff}$, $\alpha_{\rm eff}=lpha-lpha_i$



→ The fundamental equation of Prandtl's lifting line theory

* In the above equation, the only unknown is Γ

< 5.3 Prandtl's Classical Lifting-Line Theory>

* By the solution $\Gamma = \Gamma(y_0)$, following aerodynamic characteristics of finite wing are obtained.

1. The lift distribution

 $L'(y_0) = \rho_{\infty} V_{\infty} \Gamma(y_0)$ from the Kutta-Joukowski theorem

2. The total lift

$$L = \int_{-\frac{b}{2}}^{\frac{b}{2}} L'(y) dy = \rho_{\infty} V_{\infty} \int_{-\frac{b}{2}}^{\frac{b}{2}} \Gamma(y) dy \qquad \dots \dots \dots (*)$$

$$C_{L} = \frac{L}{q_{\infty}S} = \frac{2}{V_{\infty}S} \int_{-\frac{b}{2}}^{\frac{b}{2}} \Gamma(y) dy$$

3. The induced drag

 $D'_i = L'_i \sin \alpha_i$: The induced drag per unit span $D'_i = L'_i \alpha_i \quad \leftarrow \text{ if } \alpha_i \text{ is small}$ $D_i = \int_{-\frac{b}{2}}^{\frac{b}{2}} L'(y) \alpha_i(y) dy = \rho_{\infty} V_{\infty} \int_{-\frac{b}{2}}^{\frac{b}{2}} \Gamma(y) \alpha_i(y) dy \quad : \text{The total induced drag}$ $C_{D,i} = \frac{\tilde{D_i}}{q_{\infty}S} = \frac{2}{V_{\infty}S} \int_{-\frac{b}{2}}^{\frac{b}{2}} \Gamma(y) \alpha_i(y) dy \quad : \text{The induced drag coefficient} \quad \dots \dots \dots (**)$

Aerodynamics 2017 fall

- 13 -